Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment.
نویسندگان
چکیده
Bone morphogenetic protein (BMP) signaling regulates embryonic hematopoiesis via receptor-mediated activation of downstream SMAD proteins, including SMAD1. In previous work, we showed that Smad1 expression is sufficient to enhance commitment of mesoderm to hemangioblast fate. We also found indirect evidence to support a subsequent repressive function for Smad1 in hematopoiesis. To test this hypothesis directly, we developed a novel system allowing temporal control of Smad1 levels by conditional knockdown in embryonic stem cell derivatives. Depletion of Smad1 in embryoid body cultures before hemangioblast commitment limits hematopoietic potential because of a block in mesoderm development. Conversely, when Smad1 is depleted in FlK1(+) mesoderm, at a stage after hemangioblast commitment, the pool of hematopoietic progenitors is expanded. This involves enhanced expression levels for genes specific to hematopoiesis, including Gata1, Runx1 and Eklf, rather than factors required for earlier specification of the hemangioblast. The phenotype correlates with increased nuclear SMAD2 activity, indicating molecular cross-regulation between the BMP and TGF-β signaling pathways. Consistent with this mechanism, hematopoiesis was enhanced when Smad2 was directly expressed during this same developmental window. Therefore, this study reveals a temporally defined function for Smad1 in restricting the expansion of early hematopoietic progenitors.
منابع مشابه
BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways.
Bone morphogenetic protein (BMP) signaling regulates early hematopoietic development, proceeding from mesoderm patterning through the progressive commitment and differentiation of progenitor cells. The BMP pathway signals largely through receptor-mediated activation of Mothers Against Decapentaplegic homolog (SMAD) proteins, although alternate pathways are modulated through various components o...
متن کاملBasic fibroblast growth factor positively regulates hematopoietic development.
Recently identified BLast Colony Forming Cells (BL-CFCs) from in vitro differentiated embryonic stem (ES) cells represent the common progenitor of hematopoietic and endothelial cells, the hemangioblast. Access to this initial cell population committed to the hematopoietic lineage provides a unique opportunity to characterize hematopoietic commitment events. Here, we show that BL-CFC expresses t...
متن کاملEndoglin is required for hemangioblast and early hematopoietic development.
Endoglin (ENG), an ancillary receptor for several members of the transforming growth factor (TGF)-beta superfamily, has a well-studied role in endothelial function. Here, we report that endoglin also plays an important role early in development at the level of the hemangioblast, an embryonic progenitor of the hematopoietic and endothelial lineages. Eng(-/-), Eng(+/-) and Eng(+/+) mouse embryoni...
متن کاملقابلیت تمایز سلولهای بنیادی جنین انسان (Royan H5) به سلولهای همانژیوبلاست در شرایط آزمایشگاهی
Background: Human embryonic stem cells (hESCs) are capable of self-renewal and large-scale expansion. They also have the capacity to differentiate into a variety of cell types including liver, cardiac and neuron cells. However, it is not yet clear whether hESCs can differentiate to hemangioblasts under in-vitro conditions. Hemangioblasts are bipotential progenitors that can generate hematopoiet...
متن کاملSMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast
Commitment of the germ cell lineage during embryogenesis depends on zygotic gene expression in mammals, but little is known about the signaling molecules required for germ cell formation. Here we show that the intracellular signaling molecule SMAD1, acting downstream of bone morphogenetic protein (BMP) receptors, is required for the commitment of germ cell lineage from epiblast in early mouse e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 117 24 شماره
صفحات -
تاریخ انتشار 2011